Beiträge von ms.srki

    valid for the odd [tex]a={3,5,7,9,11,...}[/tex]


    Proper ninth angle

    - straight line [tex]A_1A_2[/tex]
    - straightedge and compass ,[tex]\frac{A_1A_2}{10}[/tex] , point [tex]A_4[/tex] , [tex]a+1[/tex] , [tex]a=9. followed by .9+1=10[/tex]
    - straightedge and compass , [tex]A_1A_3[/tex] normal [tex]A_1A_2 [/tex] , angle [tex]C_3C_1C_2=90^o[/tex]
    - compass [tex]A_1A_4[/tex] , from point [tex]A_5[/tex]
    - straightedge , straight line [tex]A_4A_5[/tex]
    - straightedge and compass , bisection arc [tex]A_2A_3[/tex] , point [tex]A_6[/tex]

    YOU TRY TO KEEP ... Figure down

    - compass [tex]C_2F_6[/tex] , from point [tex]E_6[/tex] , point [tex]A_{12}[/tex]
    - compass [tex]C_2F_6[/tex] , from point [tex]E_7 [/tex], point [tex]A_{13}[/tex]
    - straightedge , semi-line [tex]C_2A_{11}[/tex]
    - straightedge , semi-line [tex]C_2A_{12}[/tex]

    trisection is complete, any error !!!

    this is true for angles [tex]180^o<\alpha<0^o [/tex], larger angles of first division of the [tex]180^o[/tex]

    are you ready for the process of construction of the regular polygon

    - straightedge , straight line [tex]C_2F_1[/tex] , [tex]C_2F_1=C_2C_3[/tex]
    - compass [tex]C_2E_5[/tex] , from point [tex]C_2[/tex] , point[tex]F_3[/tex]
    - straightedge and compass , straight line the normal to [tex]C_2F_3[/tex]
    - compass [tex]D_6D_3[/tex] , from point [tex]C_2[/tex] , point[tex]F_4[/tex]
    - straightedge ,straight line extension [tex]C_2F_4[/tex]
    - compass [tex]D_7D_2[/tex] , from point [tex]C_2[/tex] , point [tex]F_5[/tex]
    - straightedge and compass , normal from point [tex]F_5[/tex] na duž [tex]C_2F_1[/tex] , point [tex]F_6[/tex]

    Solution - in the picture below

    - straightedge and compass , perpendicular [tex] b_1[/tex] straight line [tex]C_2D_5[/tex]
    - straightedge and compass , perpendicular [tex]b_2[/tex] on the [tex]b_1[/tex] from point [tex]D_3[/tex] , straight line [tex]D_6D_3[/tex]
    - straightedge and compass , perpendicular [tex]b_3[/tex] on the [tex]b_1[/tex] from point [tex]D_2[/tex] , straight line [tex]D_7D_2[/tex]

    YOU TRY TO KEEP ... Figure down
    [tex]F_1[/tex] is located on the arc [tex]C_3C_1 [/tex], [tex]C_3F_1=C_1F_1[/tex]

    - straightedge and compass , perpendicular to the line [tex]a_1[/tex] straight line [tex]C_2C_7[/tex]
    - compass [tex]C_3D_5[/tex] , in point [tex]C_2[/tex] , points [tex]E_1 and E_2[/tex]
    - straightedge and compass , perpendicular to the line [tex]a_2[/tex] line [tex]a_1[/tex] , point [tex]E_3[/tex]
    - straightedge and compass , perpendicular to the line [tex]a_3[/tex] line [tex]a_1[/tex] , point [tex]E_3[/tex]
    - straighedge , straight line [tex]E_3E_4[/tex] , point [tex]E_5[/tex]
    - straightedge and compass , perpendicular to the line [tex]a_4[/tex] straight line [tex]C_5C_6[/tex] , point [tex]E_6[/tex]
    - straightedge and compass , perpendicular to the line [tex]a_5[/tex] straight line [tex]C_5C_6[/tex] , point [tex]E_7[/tex]

    YOU TRY TO KEEP ... Figure down

    that's the way, without the knowledge of what is happening in the sphere of


    - given the angle [tex]C_1C_2C_3[/tex]
    - straightedge and compass , straight line [tex]C_2C_3[/tex] , is divided into two equal parts, point [tex]C_4[/tex]
    - straightedge and compass , straight line [tex]C_2C_4[/tex] , is divided into two equal parts, point [tex]C_5[/tex]
    - compass [tex]C_2C_5[/tex] , from the point [tex]C_2[/tex], point [tex]C_6[/tex]
    - straightedge and compass, angle bisection [tex]C_1C_2C_3[/tex] , point [tex]C_7[/tex]
    - straightedge , straight line [tex]C_2C_7[/tex]

    - compass [tex]C_2C_3[/tex] , from the point [tex]C_2[/tex] , arc [tex]C_3C_1[/tex]
    - compass [tex]C_5C_6[/tex] , from the point [tex]C_3[/tex] , point [tex]D_1[/tex]
    - compass [tex]C_5C_6[/tex] , from the point [tex]D_1[/tex] , point [tex]D_2[/tex]
    - compass [tex]C_5C_6[/tex] , from the point [tex]D_2[/tex] , point[tex]D_3[/tex]
    - straightedge , straight line [tex]C_3D_3[/tex]
    - straightedge and compass, angle bisection [tex]C_3D_3[/tex] , point [tex]D_4[/tex]
    - straightedge , straight line [tex]C_2D_4[/tex] , point [tex]D_5[/tex]

    YOU TRY TO KEEP ... Figure down

    - point [tex]A_1[/tex]
    - compass , from point [tex]A_1[/tex] , circular arc [tex]A_2A_5[/tex]
    - straightedge , in points [tex]A_1 , A_2[/tex] , straight line [tex]A_1A_2[/tex]
    - straightedge , in points [tex]A_1 , A_5[/tex] , straight line [tex]A_1A_5[/tex]
    - point [tex]A_7[/tex] , requirement [tex]A_1 A_7<\frac{A_1A_2}{3}[/tex]
    - compass [tex]A_1 , A_7[/tex] , from point [tex]A_1 [/tex] , point [tex]A_8[/tex]
    - straightedge , in points [tex]A_7, A_8[/tex] , straight line [tex]A_7A_8[/tex]
    - bisection circular arc [tex]A_2A_5[/tex] , point [tex]B_1[/tex]
    - straightedge , in points [tex]A_1, B_1[/tex] , straight line [tex]A_1B_1[/tex] , point [tex]B_2[/tex]

    - compass [tex]A_1A_2[/tex] , from point [tex]A_1[/tex] , circular arc [tex]A_9B_3[/tex]
    - compass [tex]A_7A_8[/tex] , from point [tex]A_9[/tex] , point [tex]A_{11}[/tex]
    - compass [tex]A_7A_8[/tex] , from point [tex]A_{11}[/tex] , point [tex]A_{12}[/tex]
    - compass [tex]A_7A_8[/tex] , from point [tex]A_{12}[/tex] , point [tex]A_{10}[/tex]
    - straighedge , in point [tex]A_9 ,A_{10}[/tex] , straigt line [tex]A_9A_{10}[/tex]
    - bisection circular arc [tex]A_9A_{10}[/tex] , ppint [tex]B_4[/tex]
    - straightedge , in points [tex]A_1, B_4[/tex] , straight line [tex]A_1B_4[/tex] , point [tex]B_5[/tex]

    To be continued ...

    when we look at the top sphere of circular arcs
    [tex]A_1A_6A_2,A_1A_6A_3,A_1A_6A_4,A_1A_6A_5[/tex]
    - seem straight[tex]A_1A_2,A_1A_3,A_1A_4,A_1A_5[/tex] or [tex]A_6A_2,A_6A_3,A_6A_4,A_6A_5[/tex]

    [tex]A_1[/tex] - center ball
    [tex]A_1 A_2[/tex] - radius ball
    [tex]A_1A_7A_8[/tex] - circular arc
    [tex]A_1A_9A_{10}[/tex] - circular arc three times higher than [tex]A_1A_7A_8[/tex] [tex]A_1A_7A_8=A_1A_9A_{11}=A_1A_{11}A_{12}=A_1A_{12}A_{10}[/tex]
    [tex]A_1A_2A_5[/tex] - circular arc
    [tex]A_1A_2A_3=A_1A_3A_4=A_1A_4A_5[/tex] , points [tex]A_2 , A_3 , A_4 , A_5[/tex] on the best circle the ball (or sphere)
    [tex]A_1A_6A_2=A_1A_6A_3=A_1A_6A_4=A_1A_6A_5[/tex] - circular arcs , are circular arcs on a spher


    whether the circular arc that looks like straight?

    applies this photo

    bisection angle DAC is obtained by point J
    along AJ
    GF section circular arc and along the AJ, obtained point L
    AF divider, from the point J, we get the point O
    divider AF, from point A circle c1
    divider GL, from the point J, the circuit d1, get the points P and Q

    basic angle CAB [tex]45^o[/tex]

    starting angle EAB [tex]135^o[/tex] consists of the sum of the angles CAB [tex]45^o[/tex] DAC [tex]45^o [/tex]EAD [tex]45^o[/tex]

    DC straightedge the normal to the point D , gets the point F

    AF divider from point A, we get the point G

    divider AB from point F, divider AB from point G, we get the point H

    HG divider from point H, creates a circular arc FG

    difference angle IAB [tex]30^o[/tex]

    section IA and longer circular arc FG is a point J

    - previous post was in error -

    Required accessories - pencil, compass, unmarked straightedge

    basic angle - can be any angle that can be construction using compass and unmarked straightedge, angle CAB [TEX] 45 ^ o[/TEX]

    starting angle - sum of 2, 3, 4, 5, ... basic angles , EAB [TEX] 135 ^ o[/TEX]
    sum angles CAB [TEX] 45 ^ o[/TEX] DAC [TEX] 45 ^ o[/TEX] EAD [TEX] 45 ^ o[/TEX]

    difference angle - the angle which increases or decreases the starting angle. difference starting angle and the angle of whom do not know the measure , this angle is known to see a procedure HAB [TEX] 30 ^ o[/TEX]

    straightedge AB is divided into three parts AF , how we have a basis in the angles starting angle

    divider AF from point A the circular arc FG

    section straightedge AH the circular arc FG , point I

    straightedges FG , ED
    --------------------------------------
    will continue - if there are errors

    Required accessories - pencil, compass, unmarked straightedge



    Odd proportion angles (there is a proportion of the steam angles) of the element 3 (which may be 5,7,9, ...) and the base angle [TEX] 45 ^ o[/TEX] (which can be any angle which is obtainable by means of compass and straightedge)


    The angle CAB [TEX]45 ^ o[/TEX] can be obtained with a compass and unmarked ruler, he added angles (each have [TEX]45 ^ o[/TEX]) DAC and EAD, obtained angle EAB [TEX]135 ^ o[/TEX]is the starting angle


    Merge points E (D, C, B) and get a longer ED (DC, CB)


    Along the DC from the point C draw is normal that intersects the segment AB, the intersection is a point G


    Divider AG and from point G draw a circular arc to a longer EA and H get the point, and the arc GH, join the dots G and H and get along GH


    Longer GH (ED, DC, CB) are equal, the arc EB's first circular arc can be made smaller or larger with a constant radius AB, arc GH is the second circular arc can be made smaller or larger with a constant radius AG


    INCREASING THE ANGLE
    the starting angle EAB add angle FAE [TEX]15 ^ o[/TEX] get the angle FAB [TEX]150 ^ o[/TEX] - continued in the next post

    I found how to determine the proportion of angles, and thus solve the trisection angles

    Given the angle CAB
    Divider AD (Point D is the free choice of the branch AB), from point A, creates a circular arc ED
    Bisection circular arc ED obtained item H
    Divider AD, from point D, obtained point L
    Divider AD, from the point of L, we get the point F
    Divider AF, from point A, creates a circular arc FG
    Divider DH, from the point F, intersects a circular arc FG, obtained point I
    Divider DH, referred to in Clause, cuts a circular arc FG, obtained point J
    Divider FJ, from point J, cuts a circular arc FG, obtained point K

    [tex] \angle GAK = \angle KAJ = \angle JAF = {\angle GAF \over 3} [/tex]


    Next - my character
    - Solution of the construction of a regular n (n> 2) of the polygon

    Gibt es in diesem Forum irgend jemanden, der von diesem Beitrag profitiert? Was soll der Sinn dessen sein? Kann mich da mal bitte jemand aufklären?


    if there is a mathematical procedure to solve the numbers (4, 2) and the interval [TEX]\{0,2\}\cup\{4,6\}[/TEX] for a solution which I PASSED (all 12 forms of addition) then show and prove that what I have he presented is not new in mathematics