Brennweite einer Linse

  • Hallo,

    zunächst setzt du die Gleichung [TEX]b + g = 36 \Leftrightarrow g = 36 - b[/TEX] in die Linsengleichung ein. Das ergibt:

    [TEX]\frac{1}{36 - b} + \frac{1}{b} = \frac{1}{f} \Leftrightarrow \frac{b + (36 - b)}{(36 - b)b} = \frac{1}{f} \Leftrightarrow \frac{36}{(36 - b)b} = \frac{1}{f} \Leftrightarrow b^2 - 36b + 36f = 0[/TEX].

    Nun setzt du noch [TEX]f = 8[/TEX] ein (das hätte man natürlich auch schon eher tun können) und erhältst die quadratische Gleichung

    [TEX]b^2 - 36b + 288 = 0[/TEX].

    Diese kannst du beispielsweise mit der Mitternachtsformel lösen und erhältst so

    [TEX]b = 18 \pm 6[/TEX],

    d.h. entweder ist [TEX]b = 12[/TEX] (und somit wegen [TEX]b + g = 36[/TEX] muss [TEX]g = 24[/TEX] sein) oder es ist [TEX]b = 24[/TEX] (und damit [TEX]g = 12[/TEX]).

    Hoffe, dass dir das weiterhilft.

    lg