Gleichungen schriftlich lösen x² und x

  • Ich habe Probleme mit meinen Hausaufgaben. Wir sollen eine schriftliche Lösung zu der Gleichung x²+8x+5=0 finden. Ich habe keine Ahnung wie das geht und hoffe das mir jemand das erklärt, weil es sonst keiner will.


    Mfg

  • Sind dir die binomischen Formeln bekannt?

    Sprich die 1. (a+b)² = a²+2ab+b²
    .........die 2. (a-b)² = a²-2ab+b²
    ...und die 3. (a+b)*(a-b) = a²-b²

    Das * ist übrigens ein Mal-Zeichen (Multiplikation), falls nicht bekannt.

    Nun hast du in deiner Gleichung ja schon einen guten Ansatz. Das x² (im oberen Beispiel das a²), die 8x (oben das 2ab) und die 5. Nun musst du zu der 5 allerdings etwas ergänzen. Die 5 soll nämlich dem b² entsprechen.

    Unsere Gleichung müsste dann wie folgt lauten (x+4)²=0. Da aber nun b² (4²=4*4) 16 ist und nicht 5, müssen wir das entsprechend ergänzen.

    Also haben wir

    x²+8x+5=0 |+11 (5+11=16=4²)

    Dann haben wir:

    x²+8x+16=11 (auf beiden Seiten wird die 11 addiert)

    Nun kannst du den Term auf der linken Seite zusammenfassen - mit Hilfe der ersten binomischen Formel.

    (x+4)²=11

    Davon ziehst du nun die Wurzel

    (x+4)²=11 |Wurzel

    x+4 = 3,317 (gerundet ca. die Wurzel aus 11) oder aber x+4 = -3,317

    Es kann sowohl negativ, als auch positiv sein, weil negativ mal negativ gleich positiv ist.

    Dann rechnest du bei den beiden Gleichungen |-4, damit das x alleine steht und du kriegst raus:

    x= -0,683 oder x= -7,317


    Damit hast du die Nullstellen der Parabel berechnet. Also die Stellen, an denen die Parabel die X-Achse schneidet.

    Die beiden Punkte lauten dann (-0,683|0) und (-7,317|0). Wir haben also zwei Punkte und nicht nur einen.


    Ich hoffe, du hast es nun verstanden (-:

    Schönen Abend